Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

A Drone with Insect-Inspired Folding Wings

  • Authors: Dufour, Louis; Owen, Kevin; Mintchev, Stefano; Floreano, Dario

Flying robots are increasingly adopted in search and rescue missions because of their capability to quickly collect and stream information from remote and dangerous areas. To further enhance their use, we are investigating the development of a new class of drones, foldable sensorized hubs that can quickly take off from rescuers’ hands as soon as they are taken out of a pocket or a backpack. With this aim, this paper presents the development of a foldable wing inspired by insects. The wing can be packaged for transportation or deployed for flight in half a second with a simple action from the user. The wing is manufactured as a thick origami structure with a foldable multi-layer material. The prototype of the foldable wing is experimentally characterized and validated in flight on a mini-drone.

Posted on: September 14, 2016

Bioinspired morphing wings for extended flight envelope and roll control of small drones

  • Authors: di Luca, Matteo; Mintchev, Stefano; Heitz, Grégoire Hilaire Marie; Noca, Flavio; Floreano, Dario

Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.

Posted on: December 20, 2016