NCCR Robotics is a consortium of robotics laboratories across Switzerland, working on robots for improving the quality of life and to strengthen robotics in Switzerland and worldwide. Newsletter
Classes & Workshops for Kids
Workshops Robots are engaging and captivate the young generation’s imagination. Robots also provide a valuable educational tool and a hands-on-fun way of learning STEM (science, technology, engineering and math)… Read more
Educational Robots (Cellulo)
While the use of technology is omnipresent in most jobs, our society need to move towards better education in technology in general and robotics in particular. As the two… Read more
Event Library
Search Near… Dates and Country All Countries Australia Austria China Finland France Germany Hungary Italy Japan Singapore Switzerland United Arab Emirates United Kingdom United States Region All Regions State/County… Read more
Field Tests
As part of our commitment to developing robots for use in real world applications, we organise annual practice sessions with professionals from the search and rescue community and take our… Read more
Human Robot Interaction
Have you ever dreamed of flying? The Symbiotic Drone Activity is a project that aims to give you the sensation of flying while controlling a real drone. The goal of… Read more
Masters Internships for Women
Every year, NCCR Robotics opens a call for proposals for projects for female Master’s students who wish to spend a period of 3-6 months in an NCCR Robotics lab.… Read more
Mobile Robots for Rescue Operations
Rescue operations can greatly benefit from robotics technology. After a natural disaster such as an earthquake or flood, it is often very dangerous for teams of rescue workers to… Read more
Open Source Robotics
NCCR Robotics publishes open source software and datasets, please see below for a list and links to where they can be downloaded. Robogen RoboGen™ is an open source platform… Read more
Press Pack
For a summary of our activities please download our info pack. Need more information? Contact our Communications Officer:
Fotokite, NCCR Robotics spin-off, wins Round II of the GENIUS NY accelerator
Governor Andrew M. Cuomo announced that the winner of the $1 million grand prize from Round II of the GENIUS NY accelerator is Fotokite, a team from Switzerland. The initiative is one of the world’s largest business competitions focused on unmanned systems. GENIUS NY, a year-long business accelerator, awarded six finalist teams a total …
Continue reading “Fotokite, NCCR Robotics spin-off, wins Round II of the GENIUS NY accelerator”
NCCR drones can now be effortlessly controlled with pointing gestures.
NCCR drones can now be effortlessly controlled with pointing gestures. A video demonstration of the system developed by IDSIA has been published at the Human-Robot Interaction (HRI 2018) conference, March 5-8, 2018, Chicago, IL, USA. More info: http://people.idsia.ch/~gromov/hri-landing/
Francesco Mondada’s Elements Of Robotics reached 100k downloads of chapters in four months.
The open book for robotics beginners can be downloaded here: http://bit.ly/2pa53Bg
Registration to the new Robotics Master at EPFL are open online
Click here to apply (all programs are listed on the 2nd page): http://bit.ly/2lc32jH
Fotokite selected amongst finalists of the Genius NY Competition
Fotokite, an NCCR Robotics spin-off, has been selected amongst the 6 finalists of the Genius NY Competition The Highlights The cohort will arrive at The Tech Garden in downtown Syracuse, NY in January for nearly 12 months of acceleration and incubation. Two phase in-residence accelerator program Phase One: Six teams receive a monthly stipend ($10,000 per month …
Continue reading “Fotokite selected amongst finalists of the Genius NY Competition”
New Master in Robotics at EPFL
Program’s Objectives This program provides education on the theory, technology and practice of intelligent robots, such as mobile robots, wearable robots, robotic manipulators, autonomous and brain-interfaced robots. In addition to classes spanning from electromechanical systems to advanced artificial intelligence, the program offers a large set of hands-on activities where students learn by designing, prototyping and …
Three NCCR Robotics Spin Offs selected in the IMD Start-up Competition 2017/2018
Feeltronix, Fotokite and TWIICE have been selected in this competition. For more info, visit IMD webpage. The Feeltronix breakthrough technology platform stretches the mechanical limits of electronics and provides solutions for robust and ultra-compliant rubber-based systems. Applications include smart bands for the next generation of wearables in sports, healthcare, AR/VR and fashion. feeltronix.com Fotokite is a spin-off from ETHZürich’s Flying Machine Arena with patented technology that fundamentally solves …
Continue reading “Three NCCR Robotics Spin Offs selected in the IMD Start-up Competition 2017/2018”
Scaramuzza lab at IROS 2017
Scaramuzza lab was nominated for the Best Paper Award on Safety Security and Rescue Robotics Finalist and ranked 2nd at the IROS 2017 Autonomous Drone Race.
RPG drones use event cameras to fly faster and even in the dark!
First ever autonomous flight with an event camera, which demonstrates agile manoeuvers and flying in low-light environments. Read more
Drones can almost see in the dark
(credit: UZH/Davide Scaramuzza) UZH researchers have taught drones how to fly using an eye-inspired camera, opening the door to them performing fast, agile maneuvers and flying in low-light environments. Possible applications could include supporting rescue teams with search missions at dusk or dawn. To fly safely, drones need to know their precise position and orientation …
Upcoming Events
Date/Time | Event | Description |
---|---|---|
31 Jul – 2 Aug 2018 All Day |
EPFL Drone Days
EPFL, Lausanne Suisse |
Some NCCR Robotics laboratories will present demos at the EPFL Drone Days 2018. https://dronedays.epfl.ch |
Past Events
Date/Time | Event | Description |
---|---|---|
12 Sep – 15 Sep 2017 All Day |
11th Conference on Field and Service Robotics
ETH Zurich, Zurich |
For more details and to register please see: https://www.fsr.ethz.ch/ |
6 Sep – 8 Sep 2017 All Day |
European Conference on Mobile Robotics
Paris, Paris |
Prof. Davide Scaramuzza will be a keynote speaker at this years European Conference on Mobile Robotics in Paris. |
1 Sep – 3 Sep 2017 All Day |
EPFL Drone Days
EPFL, Lausanne Suisse |
From 1 to 3 September 2017, EPFL's Ecublens campus will host the first-ever EPFL Drone Days. This event, which will include the Swiss drone racing championship, a robotics showcase and... |
18 Aug 2017 2:00 pm – 3:00 pm |
Seminar: Nanocomposite based Sensing and Monitoring
MED 115 18, EPFL, Lausanne |
Abstract: With the advent of information and communication technologies (ICT), the cost effective, robust and accurate sensors are becoming important elements of internet of things (IoT). Polymeric composite sensors that... |
5 Jul 2017 12:00 am |
RSS 2017 Workshop: Challenges in Dynamic Legged Locomotion
Massachusetts Institute of Technology, Cambridge |
The performance of modern legged robots still pales in comparison to their biological counterparts in terms of speed, robustness, versatility, and efficiency. The technical challenges that fuel this gap touch... |
21 Jun 2017 2:00 pm – 3:00 pm |
Talk by Prof. Harmut Geyer (CMU) on neuromechanical modeling of human locomotion
ME D1 1518, ecublens Suisse |
Research at CMU’s Legged Systems Group Prof. Harmut Geyer, Carnegie Mellon University https://www.cs.cmu.edu/~hgeyer/ Abstract: Research at CMU’s legged systems group focuses on three questions: What are the principles of legged... |
5 Jun – 10 Jun 2017 All Day |
Summer School on Rehabilitation Robotics
Biomedical Engineering School, Shanghai |
Organised by the Riener Lab, ETH Zurich. For more information please see: http://www.sms.hest.ethz.ch/news-and-events/sms-news-channel/2017/01/summer-school-on-rehabilitation-robotics.html |
2 Jun 2017 8:30 am – 5:00 pm |
ICRA Workshop on Event-based vision
sands expo and convention centre, Singapore 018971 |
Tobi Delbruck and Davide Scaramuzza are confirmed speakers. For more information please see: http://rpg.ifi.uzh.ch/ICRA17_event_vision_workshop.html |
28 Mar 2017 2:30 pm – 4:30 pm |
Talks: By Professor Fumiya Iida & By Professor Robert J. Full
EPFL, Lausanne Suisse |
Talks: Model-free design optimization of soft robots: Any hope? By Professor Fumiya Iida (Cambridge Univ.), (14:30 – 15:30). BioMotion Science: Leapin’ Lizards, Compressed Cockroaches and Smart Squirrels Inspire Robots By... |
27 Mar – 31 Mar 2017 All Day |
Design, Automation and Test in Europe 2017
SwissTech Convention Center, Ecublens |
We will be at the DATE 2017 conference presenting a booth with Swiss Robotics partners. If you would like to arrange a time to meet please contact techtransfer@nccr-robotics.ch |
16 Mar 2017 10:00 am – 11:00 am |
Talk by Prof. Eric Tytell (Tufts University), Quantifying responses to perturbations during locomotion in fish
MED 115 18, EPFL, Lausanne |
|
6 Mar – 9 Mar 2017 All Day |
R4L @HRI2017
Aula der Wissenschaft – Hall of Science, Vienna |
http://r4l.epfl.ch/HRI2017 |
13 Feb 2017 2:00 pm – 3:00 pm |
Talk by Dr Diego Pardo (ETHZ) Legged Robots: Stepping out of the continuous and differentiable zone.
EPFL, Lausanne |
|
16 Dec 2016 3:15 pm – 4:15 pm |
Talk: MIT Cheetah: new design paradigm shift toward mobile robots, ETH Distinguished Lecture in Robotics, Systems & Control - Sangbae Kim
ETH Zurich, HG G3, Zurich |
|
19 Nov 2016 3:15 pm – 4:15 pm |
Talk: Insect-inspired technologies for civilian drones by Dario Floreano
ETH Zurich, HG G3, Zurich |
|
9 Nov 2016 10:00 am – 11:00 am |
Talk: Rehabilitation robotics - Cristina Santos, Universidade do Minho, Portugal; Dealing with uncertainty in robot grasping - Alexandre Bernardino, Instituto Superior Técnico, Lisbon, Portugal; Locomotion with the Walkman humanoid robot - Nikos Tsagarakis, Istituto Italiano di Tecnologia, Genova, Italy.
MED 115 18, EPFL, Lausanne |
|
23 Oct – 27 Oct 2016 All Day |
International Symposium on Safety, Security and Rescue Robotics (SSRR 16)
EPFL, Lausanne Suisse |
Please see http://ssrrobotics.org/index.html |
23 Sep 2016 3:15 pm – 4:15 pm |
Talk: Humanitarian Robotics and Automation Technologies by Dr. Raj Madhavan
ETH Zurich, HG G3, Zurich |
|
13 Jul – 15 Jul 2016 All Day |
Workshop on Dynamic Locomotion and Manipulation (DLMC2016)
ETH Zurich, Zurich |
Please see the website http://www.dlmc2016.ethz.ch/ |
A little fold-up joystick brings haptics to portable devices
Landing a Drone with Pointing Gestures
DroNet: Learning to Fly by Driving
Integrative Demo of Aerial and Terrestrial Robots for Rescue Missions – 1st November 2017
5th Year Anniversary of the Robotics and Perception Group
Swiss Robotics Industry Day 2017
IROS 2017 Autonomous Drone Race: Vision-based Navigation Running fully Onboard
EPFL Drone Days 2017
Drones can almost see in the dark
Ultimate SLAM? Combining Events, Images, and IMU for Visual SLAM in HDR and High-Speed Scenarios
FlyJacket Lets You Control a Drone With Your Body
So kommen Drohnen sicher durch die Stadt
AI-Powered Drone Mimics Cars and Bikes to Navigate Through City Streets
Autonomous high flying drones learn to navigate by watching traffic below
Zürcher Algorithmus lenkt Drohnen sicher durch die Stadt
Diese Drohne lernt durch Imitation
The DroNet algorithm teaches drones to navigate city streets like cars
Drones learn to navigate autonomously by imitating cars and bicycles
Drones learn to navigate autonomously by imitating cars and bicycles
Drones learn to navigate autonomously by imitating cars and bicycles
Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.
A Collision Resilient Flying Robot
Flying robots that can locomote efficiently in GPS-denied cluttered environments have many applications, such as in search and rescue scenarios. However, dealing with the high amount of obstacles inherent to such environments is a major challenge for flying vehicles. Conventional flying platforms cannot afford to collide with obstacles, as the disturbance from the impact may provoke a crash to the ground, especially when friction forces generate torques affecting the attitude of the platform. We propose a concept of resilient flying robots capable of colliding into obstacles without compromising their flight stability. Such platforms present great advantages over existing robots as they are capable of robust flight in cluttered environments without the need for complex sense and avoid strategies or 3D mapping of the environment. We propose a design comprising an inner frame equipped with conventional propulsion and stabilization systems enclosed in a protective cage that can rotate passively thanks to a 3-axis gimbal system, which reduces the impact of friction forces on the attitude of the inner frame. After addressing important design considerations thanks to a collision model and validation experiments, we present a proof-of-concept platform, named GimBall, capable of flying in various cluttered environments. Field experiments demonstrate the robot’s ability to fly fully autonomously through a forest while experiencing multiple collisions.
A method for ego-motion estimation in micro-hovering platforms flying in very cluttered environments
We aim at developing autonomous miniature hovering flying robots capable of navigating in unstructured GPS-denied environments. A major challenge is the miniaturization of the embedded sensors and processors that allow such platforms to fly by themselves. In this paper, we propose a novel ego-motion estimation algorithm for hovering robots equipped with inertial and optic-flow sensors that runs in real- time on a microcontroller and enables autonomous flight. Unlike many vision-based methods, this algorithm does not rely on feature tracking, structure estimation, additional dis- tance sensors or assumptions about the environment. In this method, we introduce the translational optic-flow direction constraint, which uses the optic-flow direction but not its scale to correct for inertial sensor drift during changes of direction. This solution requires comparatively much sim- pler electronics and sensors and works in environments of any geometry. Here we describe the implementation and per- formance of the method on a hovering robot equipped with eight 0.65 g optic-flow sensors, and show that it can be used for closed-loop control of various motions.
A review: Can robots reshape K-12 STEM education?
Can robots in classroom reshape K-12 STEM education, and foster new ways of learning? To sketch an answer, this article reviews, side-by-side, existing literature on robot-based learning activities featuring mathematics and physics (purposefully putting aside the well-studied field of "robots to teach robotics") and existing robot platforms and toolkits suited for classroom environment (in terms of cost, ease of use, orchestration load for the teacher, etc.). Our survey suggests that the use of robots in classroom has indeed moved from purely technology to education, to encompass new didactic fields. We however identified several shortcomings, in terms of robotic platforms and teaching environments, that contribute to the limited presence of robotics in existing curricula; the lack of specific teacher training being likely pivotal. Finally, we propose an educational framework merging the tangibility of robots with the advanced visibility of augmented reality.
An Active Uprighting Mechanism for Flying Robots
Flying robots have unique advantages in the exploration of cluttered environments such as caves or collapsed buildings. Current systems however have difficulty in dealing with the large amount of obstacles inherent to such environments. Collisions with obstacles generally result in crashes from which the platform can no longer recover. This paper presents a method for designing active uprighting mechanisms for protected rotorcraft-type flying robots that allow them to upright and subsequently take off again after an otherwise mission-ending collision. This method is demonstrated on a tailsitter flying robot which is capable of consistently uprighting after falling on its side using a spring-based ’leg’ and returning to the air to continue its mission.
Bringing robotics into formal education using the Thymio open source hardware robot
Contact-based navigation for an autonomous flying robot
Autonomous navigation in obstacle-dense indoor environments is very challenging for flying robots due to the high risk of collisions, which may lead to mechanical damage of the platform and eventual failure of the mission. While conventional approaches in autonomous navigation favor obstacle avoidance strategies, recent work showed that collision-robust flying robots could hit obstacles without breaking and even self-recover after a crash to the ground. This approach is particularly interesting for autonomous navigation in complex environments where collisions are unavoidable, or for reducing the sensing and control complexity involved in obstacle avoidance. This paper aims at showing that collision-robust platforms can go a step further and exploit contacts with the environment to achieve useful navigation tasks based on the sense of touch. This approach is typically useful when weight restrictions prevent the use of heavier sensors, or as a low-level detection mechanism supplementing other sensing modalities. In this paper, a solution based on force and inertial sensors used to detect obstacles all around the robot is presented. Eight miniature force sensors, weighting 0.9g each, are integrated in the structure of a collision-robust flying platform without affecting its robustness. A proof-of-concept experiment demonstrates the use of contact sensing for exploring autonomously a room in 3D, showing significant advantages compared to a previous strategy. To our knowledge this is the first fully autonomous flying robot using touch sensors as only exteroceptive sensors.
Cutting Down the Energy Consumed by Domestic Robots: Insights from Robotic Vacuum Cleaners
The market of domestic service robots, and especially vacuum cleaners, has kept growing during the past decade. According to the International Federation of Robotics, more than 1 million units were sold worldwide in 2010. Currently, there is no in-depth analysis of the energetic impact of the introduction of this technology on the mass market. This topic is of prime importance in our energy-dependant society. This study aims at identifying key technologies leading to the reduction of the energy consumption of a domestic mobile robot, by exploring the design space using technologies issued from the robotic research field, such as the various localization and navigation strategies. This approach is validated through an in-depth analysis of seven vacuum cleaning robots. These results are used to build a global assessment of the influential parameters. The major outcome is the assessment of the positive impact of both the ceiling-based visual localization and the laser-based localization approaches.
Distributed Particle Swarm Optimization for limited-time adaptation with real robots
Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots’ battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.
Fuzzy Control System for Autonomous Navigation and Parking of Thymio II Mobile Robots
This paper proposed a fuzzy controller for the autonomous navigation problem of robotic systems in a dynamic and uncertain environment. In particular, we are interested in determining the robot motion to reach the target while ensuring their own safety and that of different agents that surround it. To achieve these goals, we have adopted a fuzzy controller for navigation and avoidance obstacle, taking into account the changing nature of the environment. The approach has been tested and validated on a Thymio II robots set. As application field, we have chosen a parking problem.
Haptic-Enabled Handheld Mobile Robots: Design and Analysis
The Cellulo robots are small tangible robots that are designed to represent virtual interactive point-like objects that reside on a plane within carefully designed learning activities. In the context of these activities, our robots not only display autonomous motion and act as tangible interfaces, but are also usable as haptic devices in order to exploit, for instance, kinesthetic learning. In this article, we present the design and analysis of the haptic interaction module of the Cellulo robots. We first detail our hardware and controller design that is low-cost and versatile. Then, we describe the task-based experimental procedure to evaluate the robot’s haptic abilities. We show that our robot is usable in most of the tested tasks and extract perceptive and manipulative guidelines for the design of haptic elements to be integrated in future learning activities. We conclude with limitations of the system and future work.