People

People

NCCR Robotics is organised around a number of research groups and labs. The lead members of each lab are shown below, follow the links to learn more about each… Read more

Dr. R. Omar Chavez-Garcia Postdoctoral Researcher IDSIA, IDSIA omar@idsia.ch

Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

Learning to Control Planar Hitting Motions in a Monigolf-like Task

  • Authors: Kronander, Klas; Khansari-Zadeh, Seyed Mohammad; Billard, Aude

A current trend in robotics is to define robot tasks using a combination of superimposed motion patterns. For maximum versatility of such motion patterns, they should be easily and efficiently adaptable for situations beyond those for which the motion was originally designed. In this work, we show how a challenging minigolf-like task can be efficiently learned by the robot using a basic hitting motion model and a task-specific adaptation of the hitting parameters: hitting speed and hitting angle. We propose an approach to learn the hitting parameters for a minigolf field using a set of provided examples. This is a non- trivial problem since the successful choice of hitting parameters generally represent a highly non-linear, multi-valued map from the situation-representation to the hitting parameters. We show that by limiting the problem to learning one combination of hitting parameters for each input, a high-performance model of the hitting parameters can be learned using only a small set of training data. We compare two statistical methods, Gaussian Process Regression (GPR) and Gaussian Mixture Regression (GMR) in the context of inferring hitting parameters for the minigolf task. We validate our approach on the 7 degrees of freedom Barrett WAM robotic arm in both a simulated and real environment.

Posted on: August 16, 2011