Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

A Hybrid BCI for Enhanced Control of a Telepresence Robot

  • Authors: Carlson, Tom; Tonin, Luca; Perdikis, Serafeim; Leeb, Robert; Millán, José del R.

Motor-disabled end users have successfully driven a telepresence robot in a complex environment using a Brain-Computer Interface (BCI). However, to facilitate the interaction aspect that underpins the notion of telepresence, users must be able to voluntarily and reliably stop the robot at any moment, not just drive from point to point. In this work, we propose to exploit the user’s residual muscular activity to provide a fast and reliable control channel, which can start/stop the telepresence robot at any moment. Our preliminary results show that not only does this hybrid approach increase the accuracy, but it also helps to reduce the workload and was the preferred control paradigm of all the participants.

Posted on: April 24, 2013

Towards Independence: A BCI Telepresence Robot for People with Severe Motor Disabilities

  • Authors: Leeb, Robert; Tonin, L.; Rohm, M.; Desideri, L.; Carlson, T.; Millán, José del R.

This paper presents an important step forward towards increasing the independence of people with severe motor disabilities, by using brain-computer interfaces (BCI) to harness the power of the Internet of Things. We analyze the stability of brain signals as end-users with motor disabilities progress from performing simple standard on-screen training tasks to interacting with real devices in the real world. Furthermore, we demonstrate how the concept of shared control —which interprets the user’s commands in context— empowers users to perform rather complex tasks without a high workload. We present the results of nine end-users with motor disabilities who were able to complete navigation tasks with a telepresence robot successfully in a remote environment (in some cases in a different country) that they had never previously visited. Moreover, these end-users achieved similar levels of performance to a control group of ten healthy users who were already familiar with the environment.

Posted on: April 27, 2015