Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

Brain-Controlled Wheelchairs: A Robotic Architecture

  • Authors: Carlson, Tom; Millán, José del R.

Independent mobility is core to being able to perform activities of daily living by oneself. However, powered wheelchairs are not an option for a large number of people who are unable to use conventional interfaces, due to severe motor–disabilities. Non-invasive brain–computer interfaces (BCIs) offer a promising solution to this interaction problem and in this article we present a shared control architecture that couples the intelligence and desires of the user with the precision of a powered wheelchair. We show how four healthy subjects are able to master control of the wheelchair using an asynchronous motor–imagery based BCI protocol and how this results in a higher overall task performance, compared with alternative synchronous P300–based approaches.

Posted on: October 9, 2012

Driving a BCI Wheelchair: A Patient Case Study

  • Authors: Carlson, Tom; Leeb, Robert; Monnard, Guillaume; Al-Khodairy, Abdul; Millán, José del R.

Our brain-actuated wheelchair uses shared control to couple the user input with the contextual information about the surroundings in order to perform natural manoeuvres both safely and efficiently. In this study, we investigate the feasibility of using our brain–controlled wheelchair with patients in a rehabilitation clinic. Both user and system performance metrics are analysed. We find that the driving performance of a motor-disabled patient at the clinic is comparable with the performance of four healthy subjects. All five participants were able to complete the driving task successfully.

Posted on: January 23, 2012

Evaluation of Proportional and Discrete Shared Control Paradigms for Low Resolution User Inputs

  • Authors: Carlson, Tom; Monnard, Guillaume; Leeb, Robert; Millán, José del R.

For people with severe physical disabilities, low resolution input devices, such as buttons, sip and puff switches and brain–computer interfaces provide an opportunity to interact with the world. However, it can be difficult to control assistive technology, such as wheelchairs, tele–presence robots and robotic arms, when you have only a limited number of commands available and/or a lack of temporal precision in issuing such commands. These limitations can be overcome by employing shared control techniques, whereby the system assists the user in performing the desired task. In this study we compare the use of a simple discrete shared control policy with a more dynamic proportional shared control policy. We evaluate both approaches on a wheelchair that is only operated by two temporally– constrained discrete buttons. The experiments were performed in two different realistic indoor scenarios: an open–plan, spacious environment and a smaller, more cluttered office environment. A total of 10 healthy participants took part in this study.

Posted on: August 26, 2011

The Birth of the Brain–Controlled Wheelchair

  • Authors: Carlson, Tom; Leeb, Robert; Chavarriaga, Ricardo; Millán, José del R.

The prospect of controlling devices merely by the power of one’s thoughts is compelling, especially for assistive technology applications. In the accompanying video, we show how we have strived to push brain–computer interface (BCI) technology out of the lab and into the real world, while simultaneously moving away from testing solely with healthy subjects to undertaking trials with patients and potential end–users. We describe the evolution of the motor imagery based BCI, which has resulted in a major milestone: the first patient trial of a motor imagery based BCI controlled wheelchair.

Posted on: October 9, 2012